Cascade model of multispecies trapped particles turbulence

Renaud Lustrat, with Shaokang Xu, P. Morel and Ö.D. Gürcan

M2 Physique des Plasmas et de la Fusion internship

April 25, 2018
Starting point

Gyro-bounce averaged, delta-f equation in k-space:

$$
\frac{\partial_t f_{s,k,\ell}}{f_{s,k,\ell}} = i k_{s} j_{0s,k,\ell} \phi_{k} d_{s} F_{0s,\ell} - i k_{s} \frac{E \Omega_{d}}{Z_{s}} f_{s,k,\ell}
\sum_{p+q+k=0} [p_{s} q_{p} - p_{s} q_{p}] J_{0,s,p,\ell} \phi_{p}\star f_{s,q,\ell} - D_{k} f_{s,k,\ell},
$$

Sources:

- injection due to background gradients $\propto d_{s} F_{0s}$
- advection with precession freq. $\propto \Omega_{d}$

Quasi-neutrality:

$$
C_{k} \phi_{k} = \sum_{s} q_{s} \int_{0}^{+\infty} J_{0,s,k,\ell} f_{s,k,\ell} \sqrt{E} dE.
$$

NB: C_{k} contains the adiabatic response of passing particles, polarization effect...
Conserved quantities

Nonlinear term comes from Poisson Bracket:
\[\{\mathcal{J}_{0,s} \cdot \Phi ; \delta f_{s,\ell} \}_{\psi,\alpha} = -\{\delta f_{s,\ell} ; \mathcal{J}_{0,s} \cdot \Phi \}_{\psi,\alpha}\]

Squared distribution function \(\simeq\) entropy:
\[\mathcal{E}_{f_s}^k \equiv T_{0s} \int_0^{\infty} \frac{|f_{s,k,\ell}|^2}{2F_{0s}} \sqrt{E} dE\]
\[\partial_t \mathcal{E}_{f_s}^k = \mathcal{P}_{f_s}^k + \mathcal{N}_{f_s}^k - \mathcal{D}_{f_s}^k, \quad \mathcal{P}_{f_s}^k \propto \partial_\psi F_{0s}\]

Squared potential \(\simeq\) electrostatic potential energy:
\[\mathcal{E}_\phi^k \equiv C_k \frac{|\phi_k|^2}{2}\]
\[\partial_t \mathcal{E}_\phi = \mathcal{P}_\phi^k + \mathcal{N}_\phi^k - \mathcal{D}_{f_s}^k, \quad \mathcal{P}_\phi^k \propto \Omega_d\]

Where, of course:
\[\sum_k \mathcal{N}_{f_s}^k = \sum_k \mathcal{N}_{\phi}^k = 0.\]
Local interactions

Logarithmic, isotropic, discretization:

\[k_n = k_0 g^n = k_\psi = k_\alpha \]

Keep only nearest neighbours:

\[\{(n - 2; n - 1); (n - 1; n + 1); (n + 1; n + 2)\} \]

Sabra truncation with gyro-bounce averaged Vlasov equation:

\[
\partial_t f_{s,n,\ell} = i k_n J_{0s,n,\ell} \phi_n d_\psi F_{0s,\ell} - ik_n \frac{E \Omega_d}{Z_s} f_{s,n,\ell} - D_n f_{s,n,\ell} \\
+ \alpha k_n^2 g^{-3} [J_{0s,n-2,\ell} \phi_{n-2} f_{s,n-1,\ell} - J_{0s,n-1,\ell} \phi_{n-1} f_{s,n-2,\ell}] \\
+ \alpha k_n^2 g^{-1} [J_{0s,n-1,\ell} \phi_{n-1}^* f_{s,n+1,\ell} - J_{0s,n,\ell} \phi_{n+1} f_{s,n-1,\ell}] \\
+ \alpha k_n^2 g [J_{0s,n+1,\ell} \phi_{n+1} f_{s,n+2,\ell} - J_{0s,n+2,\ell} \phi_{n+2} f_{s,n+1,\ell}] ,
\]

Quasi-neutrality:

\[
C_n \phi_n = \sum_s q_s \int_0^{+\infty} J_{0s,n,\ell} f_{s,n,\ell} \sqrt{E} \, dE .
\]
τ scan: linear physics

$\tau = 0.2$

$\tau = 0.713$

$\tau = 2.0$

TIM *linearly* dominant

TIM + TEM with \approx same growth rate

TEM *linearly* dominant
τ scan: free energy *spectra*

\[\tau = 0.2 \]

\[\tau = 2.0 \]

\[\tau = 0.713 \]

\[\star \quad \tau = 0.2 \]

\[\text{TIM} : \mathcal{E}_\phi \gg \mathcal{E}_{f_i} \gg \mathcal{E}_{f_e} \]

\[\star \quad \tau = 0.713 \]

\[\text{TIM + TEM} : \mathcal{E} \gg \mathcal{E}_{f_i} \geq \mathcal{E}_{f_e} \]

\[\star \quad \tau = 2.0 \]

\[\text{TEM} : \mathcal{E}_\phi \gg \mathcal{E}_{f_i} \approx \mathcal{E}_{f_e} \]
τ scan: free energy spectra

⋆ \mathcal{E}_ϕ: no clear exponent max for TIM + TEM
⋆ \mathcal{E}_{f_i}: almost identical
⋆ \mathcal{E}_{f_e}: same slopes increase with τ
τ scan: productions and dissipations

- $P_{TEM+TIM} > P_{TEM} > P_{TIM}$
- dissipations follow, with large scales $\mathcal{D}_L >$ small scales \mathcal{D}_s
Discussion

Summary:

- Not surprising: \mathcal{E}_{f_e} scales with τ
- Not so much surprising: production max for TIM + TEM
- Surprising: \mathcal{E}_ϕ systematically higher
- Surprising: \mathcal{E}_{f_i} not changing with τ

TO DO:

- Separate \mathcal{P} into particles Γ_{n_s} and heat Q_{T_s} fluxes
- effect of adiabaticity (same spirit as Shaokang’s presentation)
- compare exponents with theory